
An Introduction To Object-Oriented
Programming (3rd Edition)

 Ebook Free Download

https://easter-coby.firebaseapp.com
http://privateebooks.com/en-us/read-book/3Odva/an-introduction-to-object-oriented-programming-3rd-edition.pdf?r=o%2BvmjVmONnVMzlPqEid%2BNJ4OWogZMN3iC%2BiCMyQdx4s%3D
http://privateebooks.com/en-us/read-book/3Odva/an-introduction-to-object-oriented-programming-3rd-edition.pdf?r=8PXuu%2BANCMhVybVYISH3TS7JCS0hEtwTF0bJNR8S5ug%3D

In An Introduction to Object-Oriented Programming, Timothy Budd provides a

language-independent presentation of object-oriented principles, such as objects, methods,

inheritance (including multiple inheritance) and polymorphism. Examples are drawn from several

different languages, including (among others) C++, C#, Java, CLOS, Delphi, Eiffel, Objective-C and

Smalltalk. By examining many languages, the reader is better able to appreciate the general

principles that lie beyond the syntax of the individual languages. This new edition presents

examples drawn from a wider range of languages, including Eiffel, CLOS, and Python in addition to

the mainstream languages, as well as extensive comparisons between C++, C# and Java. Case

studies explore the application of polymorphism in the STL in C++ and the AWT in Java. UML

notation and diagrams are integrated and utilized throughout. The book also features advanced

sections on design patterns, reflection and introspection, network programming, and the

implementation of object-oriented languages. This book is appropriate for programmers looking to

read about the theory behind and functionality of a variety of object-oriented programming

languages. It is also useful as a reference.

Paperback: 648 pages

Publisher: Pearson; 3 edition (October 22, 2001)

Language: English

ISBN-10: 0201760312

ISBN-13: 978-0201760316

Product Dimensions: 6.5 x 1.5 x 9.1 inches

Shipping Weight: 2.1 pounds (View shipping rates and policies)

Average Customer Review: 4.1 out of 5 stars 17 customer reviews

Best Sellers Rank: #111,007 in Books (See Top 100 in Books) #50 inÃ‚Â Books > Textbooks >

Computer Science > Object-Oriented Software Design #69 inÃ‚Â Books > Computers &

Technology > Computer Science > Systems Analysis & Design #179 inÃ‚Â Books > Computers &

Technology > Programming > Software Design, Testing & Engineering > Object-Oriented Design

This slender volume provides a great first taste of object- oriented concepts such as encapsulation

and inheritance. An Introduction to Object-Oriented Programming explains all the key technical

concepts and goes on to explore the "whys" of programming, such as why a program that one

programmer could write in two months probably couldn't be written by two programmers in one

month. The reason? Complexity. As a textbook, An Introduction to Object-Oriented Programming

does what you would expect--it explains all the key object-orientation concepts clearly and

understandably. This book then goes beyond the basics to show why the object concept is strong in

terms of design and economics, allowing readers to grasp more than just the technical aspects of

the subject. Because examples are in C++, SmallTalk, Objective C, and Object Pascal, this book

works well if you're trying to learn object orientation generally, without focusing too much on the

mechanics of a particular language. An added attraction is that this book has been recently revised

to include some Java information, helping readers to see how object orientation works on the cutting

edge as well as in more established languages. This book is useful if you have some experience in

programming, but want to expand your knowledge into object orientation by way of clear examples

and technical but far-reaching prose. --This text refers to an out of print or unavailable edition of this

title.

In An Introduction to Object-Oriented Programming, Timothy Budd provides a

language-independent presentation of object-oriented principles, such as objects, methods,

inheritance (including multiple inheritance) and polymorphism. Examples are drawn from several

different languages, including (among others) C++, C#, Java, CLOS, Delphi, Eiffel, Objective-C and

Smalltalk. By examining many languages, the reader is better able to appreciate the general

principles that lie beyond the syntax of the individual languages.This new edition presents examples

drawn from a wider range of languages, including Eiffel, CLOS, and Python in addition to the

mainstream languages, as well as extensive comparisons between C++, C# and Java. Case studies

explore the application of polymorphism in the STL in C++ and the AWT in Java. UML notation and

diagrams are integrated and utilized throughout. The book also features advanced sections on

design patterns, reflection and introspection, network programming, and the implementation of

object-oriented languages.This book is appropriate for programmers looking to read about the

theory behind and functionality of a variety of object-oriented programming languages. It is also

useful as a reference.

I've read a number of introductions to object-oriented design and programming. This one is the best

all-around introduction that I have seen. It starts in the real world, with a discussion of how one

plans and organizes a task (sending flowers to a significant other) that requires more than a single

person to get done. That's a pleasant change from texts that begin with Dauntingly Dry Definitions

("encapsulation", "inheritance", and my favorite, "polymorphism").To the author's credit, he avoids

launching into inheritance until Chapter 8, by which time he has laid enough groundwork to reduce

the concept to common sense. Other concepts are presented in a similar manner.Note that this

book is a survey book, not an in-depth programming manual. You won't learn C++ or Delphi, or any

of the other half-dozen languages used for the book's examples. And the book focuses on

concepts, rather than implementation. you won't learn how to implement a Singleton pattern in C#,

although you will learn what it is and why it is useful. Finally, the book assumes familiarity with

traditional, procedural programming. This is not a Programming 101 text.I would recommend this

book enthusiastically as a starting point for anyone making the transition from traditional

programming to OOP. If you are moving to the DotNet platform, I have created a list ("So you'd like

to ... Transition to DotNet") with some other recommended texts.

its a vey helpful book, for understanding of OOP, without attachment of a programing language, in

the book have examples in difference languages

Great

I like the examples that book gave! It's very descriptive.The book covers from basic to detail, so you

will understand the idea of OOP better.

I found the book good, but I didn't walk away feeling that it provided a good grasp of any but the

most general concepts of OO. I would have preferred to see more examples of turning a problem

into an OO solution rather than "here's how to write a class in Java, C++, etc...".

I used this text for an OOP course I taught to college sophomores whose previous background was

Pascal and C. I chose this book because, almost uniquely in the field, it was NOT tied to one

specific language and that language's OOP idiom, but rather pointed out significant differences

among C++, Java, Smalltalk, Objective-C, and two different Object Pascals in their views of OOP. (I

was disappointed by the absence of multi-dispatch languages such as CLOS from the list.) Budd

introduces each major principle and programming construct in practical but language-independent

terms, then illustrates how that construct is specified in several different languages. I found Budd's

treatment of the basic concepts much simpler, clearer, and less jargon-laden than that in Booch. My

students had some trouble, but they got through much of the book, whereas I can't imagine them

wading through Booch at all. I still like the interlingual approach, but I would advise teachers using

the book to pick two or three of the languages and simply ignore the rest of the examples, to avoid

confusing students too much. I haven't found the ideal text for this course, but Budd is at least a

pretty good one.

I've been using classes more as a means of organizing and improving the maintainability,

understanding of various applications I've built over the past 3 years (VB). As I am about to develop

solutions using the .NET platform (C#, VB.NET), I thought it would do me good to formalize my

understanding of OOP/OOD. After reading this text (3rd Edition), I not only formalized my

understanding, but was able to see OOP as clearly as I could structured programming (Code

Complete). In my opinion, all should use this as the first book before trying to participate/apply J2EE

or Microsoft.NET as it will allow you "properly" communicate, design and code systems from

abstraction to detail.

I had a great opportunity to know the author of this book in person: I took Dr.Budd's course on

Object-oriented programming in Oregon State University in Fall 2000. We used this book in class

throughout the term, and thus all of us were compelled to read this book from cover to cover.The

principal point I would like to emphasize is that the book really is about the Object-Oriented

Concepts. It is not a "guide how to aply OO-principles in C++", it is not an "Object Pascal

OO-programming". No. The book is about general concepts of Object-oriented Programming not

bounded to any particular OO-language. Although sometimes it was really difficult to understand

some of the ideas, the good point was that the author did not try to make the things simpler. If

something was difficult to understand - this only meant that it was that Real Blue Thing whose

perception makes you a cool programmer.However, the illustrations in the book (at least in the

edition I obtained) were not very good, but rather poor. Had they been made by a profeccional

designer, I would have rated the book with 5 stars. So far, it's only 4.

Introduction to Programming with Greenfoot: Object-Oriented Programming in Java with Games and

Simulations (2nd Edition) An Introduction to Object-Oriented Programming (3rd Edition)

Programming Python: Powerful Object-Oriented Programming Java Programming: Intermediate

Concepts for the Fundamentals of Object Oriented Programming Java Methods: An Introduction to

Object Oriented Programming Microsoft Visual C#: An Introduction to Object-Oriented Programming

An Introduction to Object-Oriented Programming with Java Applying UML and Patterns: An

http://privateebooks.com/en-us/read-book/3Odva/an-introduction-to-object-oriented-programming-3rd-edition.pdf?r=aj0tHJhBNQrmpdNxWQQdbTmnGyyKv1%2FWL6BCNGHCCB8%3D

Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd Edition)

Object-Oriented Programming in C++ (4th Edition) Object-Oriented Programming in Java: A

Graphical Approach, Preliminary Edition An Object-Oriented Approach to Programming Logic and

Design Beginning Java Programming: The Object-Oriented Approach Python Programming: Python

Programming for Beginners, Python Programming for Intermediates, Python Programming for

Advanced C++: The Ultimate Crash Course to Learning the Basics of C++ (C programming, C++ in

easy steps, C++ programming, Start coding today) (CSS,C Programming, ... Programming,PHP,

Coding, Java Book 1) Object-Oriented Analysis and Design with Applications (3rd Edition) The

Object-Oriented Thought Process (4th Edition) (Developer's Library) Object-Oriented Modeling and

Design with UML (2nd Edition) Tools For Structured and Object-Oriented Design (7th Edition)

Object Oriented Software Development Using Java (2nd Edition) Object Lessons for a Year: 52

Talks for the Children's Sermon Time (Object Lesson Series)

https://easter-coby.firebaseapp.com/contact.html
https://easter-coby.firebaseapp.com/dmca.html
https://easter-coby.firebaseapp.com/privacy-policy.html
https://easter-coby.firebaseapp.com/faq.html

